INTRODUCTION TO SQL

Bobby Iliev
Table of Contents

About the book .. 5
 - About the author ... 6
 - Sponsors .. 7
 - Ebook PDF Generation Tool .. 9
 - Book Cover .. 10
 - License ... 11

Databases ... 12
 - Tables and columns ... 13

MySQL ... 15
 - Installing MySQL .. 16
 - Accessing MySQL via CLI ... 18
 - Creating a database .. 19
 - Configuring .my.cnf .. 20
 - The mysqladmin command ... 21
 - GUI clients ... 22

Tables ... 23
 - Data types .. 24
 - Creating a database .. 25
 - Creating tables .. 27
 - Dropping tables ... 29
 - Allowing NULL values ... 30
 - Specifying a primary key ... 31
 - Updating tables .. 32
About the book

• **This version was published on May 18 2021**

This is an open-source introduction to SQL guide that will help you learn the basics of SQL and start using relational databases for your SysOps, DevOps, and Dev projects. No matter if you are a DevOps/SysOps engineer, developer, or just a Linux enthusiast, you will most likely have to use SQL at some point in your career.

The guide is suitable for anyone working as a developer, system administrator, or a DevOps engineer and wants to learn the basics of SQL.
About the author

My name is Bobby Iliev, and I have been working as a Linux DevOps Engineer since 2014. I am an avid Linux lover and supporter of the open-source movement philosophy. I am always doing that which I cannot do in order that I may learn how to do it, and I believe in sharing knowledge.

I think it's essential always to keep professional and surround yourself with good people, work hard, and be nice to everyone. You have to perform at a consistently higher level than others. That's the mark of a true professional.

For more information, please visit my blog at https://bobbyiliev.com, follow me on Twitter @bobbyiliev_ and YouTube.
Sponsors

This book is made possible thanks to these fantastic companies!

DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity developers love and businesses trust to run production applications at scale.

It provides highly available, secure, and scalable compute, storage, and networking solutions that help developers build great software faster.

Founded in 2012 with offices in New York and Cambridge, MA, DigitalOcean offers transparent and affordable pricing, an elegant user interface, and one of the largest libraries of open source resources available.

For more information, please visit https://www.digitalocean.com or follow [@digitalocean](https://twitter.com/digitalocean) on Twitter.

If you are new to DigitalOcean, you can get a free $100 credit and spin up your own servers via this referral link here:

Free $100 Credit For DigitalOcean

DevDojo

The DevDojo is a resource to learn all things web development and web design. Learn on your lunch break or wake up and enjoy a cup of coffee with us to learn something new.

Join this developer community, and we can all learn together, build together, and grow together.
Join DevDojo

For more information, please visit https://www.devdojo.com or follow @thedevdojo on Twitter.
Ebook PDF Generation Tool

This ebook was generated by Ibis developed by Mohamed Said.

Ibis is a PHP tool that helps you write eBooks in markdown.
Book Cover

The cover for this ebook was created with Canva.com.

If you ever need to create a graphic, poster, invitation, logo, presentation – or anything that looks good — give Canva a go.
License

MIT License

Copyright (c) 2020 Bobby Iliev

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Databases

Before we dive deep into SQL, let's quickly define what a database is.

The definition of databases from Wikipedia is:

A database is an organized collection of data, generally stored and accessed electronically from a computer system.

In other words, a database is a collection of data stored and structured in different database tables.
Tables and columns

You’ve most likely worked with spreadsheet systems like Excel or Google Sheets. At the very basic, database tables are quite similar to spreadsheets.

Each table has different **columns** which could contain different types of data.

For example, if you have a todo list app, you would have a database, and in your database, you would have different tables storing different information like:

- **Users** - In the users table, you would have some data for your users like: `username`, `name`, and `active`, for example.
- **Tasks** - The tasks table would store all of the tasks that you are planning to do. The columns of the tasks table would be for example, `task_name`, `status`, `due_date` and `priority`.

The Users table will look like this:

```
+----+----------+---------------+--------+
| id | username | name          | active |
+----+----------+---------------+--------+
| 1  |    bobby | Bobby Iliev   | true   |
| 2  |    grisi | Greisi I.     | true   |
| 3  |  devdojo | Dev Dojo      | false  |
+----+----------+---------------+--------+
```

Rundown of the table structure:

- We have 4 columns: `id`, `username`, `name` and `active`
- We also have 3 entries/users
- The `id` column is a unique identifier of each user and is auto-incremented.
In the next chapter, we will learn how to install MySQL and create our first database.
MySQL

Now that you know what a database, table, and column are, the next thing that you would need to do is install a database service where you would be running your SQL queries on.

We would be using MySQL as it is free, open-source, and very widely used.
Installing MySQL

As we are going to use **Ubuntu**, in order to install MySQL run the following commands:

- First update your **apt** repository:

  ```
sudo apt update -y
  ```

- Then install MySQL:

  ```
sudo apt install mysql-server mysql-client
  ```

We are installing 2 packages, one is the actual MySQL server, and the other is the MySQL client, which would allow us to connect to the MySQL server and run our queries.

In order to check if MySQL is running, run the following command:

```
sudo systemctl status mysql.service
  ```

In order to secure your MySQL server, you could run the following command:

```
sudo mysql_secure_installation
  ```

Then follow the prompt and finally choose a secure password and save it in a secure place like a password manager.

With that, you would have MySQL installed on your Ubuntu server. The above should also work just fine on Debina.
Install MySQL on Mac

I would recommend installing MySQL using Homebrew:

```sh
brew install mysql
```

After that start MySQL:

```sh
brew services start mysql
```

And finally, secure it:

```sh
mysql_secure_installation
```

In case that you ever need to stop the MySQL service, you could do so with the following command:

```sh
brew services stop mysql
```

Install MySQL on Windows

In order to install MySQL on Windows, I would recommend following the steps from the official documentation here:

Accessing MySQL via CLI

To access MySQL run the `mysql` command followed by your user:

```
mysql -u root -p
```
Creating a database

After that, switch to the demo database that we created in the previous chapter:

```sql
USE demo;
```

To exit the just type the following:

```sql
exit;
```
Configuring `.my.cnf`

By configuring the `~/.my.cnf` file in your user's home directory, MySQL would allow you to login without prompting you for a password.

In order to make that change, what you need to do is first create a `.my.cnf` file in your user's home directory:

```
touch ~/.my.cnf
```

After that, set secure permissions so that other regular users could not read the file:

```
chmod 600 ~/.my.cnf
```

Then using your favorite text editor, open the file:

```
nano ~/.my.cnf
```

And add the following configuration:

```
[client]
user=YOUR_MYSQL_USERNAME
password=YOUR_MYSQL_PASSWORD
```

Make sure to update your MySQL credentials accordingly, then save the file and exit.

After that, if you run just `mysql`, you will be authenticated directly with the credentials that you've specified in the `~/.my.cnf` file without being prompted for a password.
The mysqladmin command

As a quick test, you could check all of your open SQL connections by running the following command:

```
mysqladmin proc
```

The `mysqladmin` tool would also use the client details from the `~/.my.cnf` file, and it would list your current MySQL process list.

Another cool thing that you could try doing is combining this with the `watch` command and kind of monitor your MySQL connections in almost real-time:

```
watch -n1 mysqladmin proc
```

To stop the `watch` command, just hit `CTRL+C`
GUI clients

If you prefer using GUI clients, you could take a look at the following ones and install them locally on your laptop:

- MySQL Workbench
- Sequel Pro
- TablePlus

This will allow you to connect to your database via a graphical interface rather than the `mysql` command-line tool.
Tables

Before we get started with SQL, let's learn how to create tables and columns.

As an example, we are going to create a users table with the following columns:

- **id** - this is going to be the primary ID of the table and would be the unique identifier of each user.
- **username** - this column would hold the username of our users
- **name** - here, we will store the full name of the users
- **status** - here, we will store the status of a user, which would indicate if a user is active or not.

You need to specify the data type of each column.

In our case it would be like this:

- **id** - Integer
- **username** - Varchar
- **name** - Varchar
- **status** - Number
Data types

The most common data types that you would come across are:

- **CHAR(size)**: Fixed-length character string with a maximum length of 255 bytes.
- **VARCHAR(size)**: Variable-length character string. Max size is specified in parenthesis.
- **TEXT(size)**: A string with a maximum length of 65,535 bytes.
- **INTEGER(size) or INT(size)**: A medium integer.
- **BOOLEAN or BOOL**: Holds a true or false value.
- **DATE**: Holds a date.

Let's have the following users table as an example:

- **id**: We would want to set the ID to **INT**.
- **name**: The name should fit in a **VARCHAR** column.
- **about**: As the about section could be longer, we could set the column data type to **TEXT**.
- **birthday**: For the birthday column of the user, we could use **DATE**.

For more information on all data types available, make sure to check out the official documentation [here](#).
Creating a database

As we briefly covered in the previous chapter, before you could create tables, you would need to create a database by running the following:

- First access MySQL:

```bash
code
mysql -u root -p
```

- Then create a database called `demo_db`:

```sql
CREATE DATABASE demo_db;
```

Note: the database name needs to be unique, if you already have a database named `demo_db` you would receive an error that the database already exists.

You can consider this database as the container where we would create all of the tables in.

Once you've created the database, you need to switch to that database:

```sql
USE demo_db;
```

You can think of this as accessing a directory in Linux with the `cd` command. With `USE`, we switch to a specific database.

Alternatively, if you do not want to 'switch' to the specific database, you would need to specify the so-called fully qualified table name. For example, if you had a `users` table in the `demo_db`, and you wanted to select all of the entries from that table, you could use one of the
following two approaches:

- Switch to the demo_db first and then run a select statement:

  ```sql
  USE demo_db;
  SELECT username FROM demo_db.users;
  ```

- Alternatively, rather than using the USE command first, specify the database name followed by the table name separated with a dot: `db_name.table_name`:

  ```sql
  SELECT username FROM demo_db.users;
  ```

We are going to cover the SELECT statement more in-depth in the following chapters.
Creating tables

In order to create a table, you need to use the `CREATE TABLE` statement followed by the columns that you want to have in that table and their data type.

Let's say that we wanted to create a `users` table with the following columns:

- **id**: An integer value
- **username**: A varchar value
- **about**: A text type
- **birthday**: Date
- **active**: True or false

The query that we would need to run to create that table would be:

```sql
CREATE TABLE users
(
    id INT,
    username VARCHAR(255),
    about TEXT,
    birthday DATE,
    active BOOL
);
```

Note: You need to select a database first with the `USE` command as mentioned above. Otherwise you will get the following error: `ERROR 1046 (3D000): No database selected.

To list the available tables, you could run the following command:

```
SHOW TABLES;
```
Output:

<table>
<thead>
<tr>
<th>Tables_in_demo_db</th>
</tr>
</thead>
<tbody>
<tr>
<td>users</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
</tbody>
</table>
Dropping tables

You can drop or delete tables by using the `DROP TABLE` statement.

Let's test that and drop the table that we've just created:

```
DROP TABLE users;
```

The output that you would get would be:

```
Query OK, 0 rows affected (0.03 sec)
```

And now, if you were to run the `SHOW TABLES` query again, you would get the following output:

```
Empty set (0.00 sec)
```
Allowing NULL values

By default, each column in your table can hold NULL values. In case that you don't want to allow NULL values for some of the columns in a specific table, you need to specify this during the table creation or later on change the table to allow that.

For example, let's say that we want the `username` column to be a required one, we would need to alter the table create statement and include `NOT NULL` right next to the `username` column like this:

```sql
CREATE TABLE users
(
    id INT,
    username VARCHAR(255) NOT NULL,
    about TEXT,
    birthday DATE,
    active BOOL
);
```

That way, when you try to add a new user, MySQL will let you know that the `username` column is required.
This is a sample from "Introduction to SQL" by Bobby Iliev.

For more information, Click here.